일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
6 | 7 | 8 | 9 | 10 | 11 | 12 |
13 | 14 | 15 | 16 | 17 | 18 | 19 |
20 | 21 | 22 | 23 | 24 | 25 | 26 |
27 | 28 | 29 | 30 |
- 알고리즘
- 코딩
- BFS
- Trino
- 여행
- 맛집
- java
- 코엑스맛집
- bigdata engineering
- 코테
- 양평
- apache iceberg
- 개발
- 삼성역맛집
- 백준
- 코딩테스트
- 프로그래머스
- Data Engineering
- Data Engineer
- 자바
- 영어
- HIVE
- Iceberg
- hadoop
- 파이썬
- BigData
- 용인맛집
- bigdata engineer
- 코엑스
- dfs
- Today
- Total
목록HIVE (6)
지구정복

Spark3로 managed table create하는데 아래와 같은 에러 발생 spark-sql> CREATE TABLE spark_catalog.db1_test.example_hive1 ( > id INT, > name STRING, > age INT > ) > STORED AS parquet; ErrorCaused by: org.apache.hadoop.hive.ql.metadata.HiveException: MetaException(message:Table db1_test.example_hive1 failed strict managed table checks due to the following reas..
CHAPTER 6 Apache SparkConfigurationConfiguring Apache Iceberg and SparkConfiguring via the CLIAs a first step, you’ll need to specify the required packages to be installed and used with the Spark session. To do so, Spark provides the --packages option, which allows Spark to easily download the specified Maven-based packages and its dependencies to add them to the classpath of your application. ..

A data warehouse acts as a centralized repository for organizations to store all theirdata coming in from a multitude of sources, allowing data consumers such as analystsand BI engineers to access data easily and quickly from one single source to start their analysis The Data LakeWhile data warehouses provided a mechanism for running analytics on structureddata, they still had several issues:..

apache iceberg guidebook에서 가져온 내용입니다. CHAPTER 3Lifecycle of Write and Read Queries Writing Queries in Apache Iceberg Create the TableSend the query to the engineWrite the metadata fileUpdate the catalog file to commit changes Insert the Query Send the query to the engineCheck the catalogWrite the datafiles and metadata filesUpdate the catalog file to commit changes Merge QuerySend the quer..